

J. B. Johnson¹, V. Asnani², M. Hopkins³, A. Wilkinson², K. Zacny⁴

¹UAF-INE, ²NASA-GRC, ³USACE-ERDC-CRREL, ⁴Honeybee Robotics

Scientific & Exploration Potential of the Lunar Poles Project

- Johns Hopkins/Applied Physics Laboratory led NASA Lunar Science Institute Funded Project (Ben Bussey - PI)
- Four science and engineering topic areas
 - Lunar Polar Environment
 - Surface Characterization
 - Surface Science, Instrumentation & Operations
 - Engineering and scientific aspects of surface operations
 - Excavation and mobility modeling
 - Education & Public Outreach

Excavation & Mobility Modeling

- Study regolith geotechnical properties as they relate to excavation & mobility
 - Investigate effectiveness of percussive blades & scoops
- Validate a model that can be used to simulate conditions unobtainable in a laboratory

Polyellipsoidal particles

Excavation & Mobility Testing Goals

- Lunar regolith simulant geotechnical properties testing
- Excavation & mobility testing (under identical conditions as geotechnical tests)
 - Percussive blades & scoops
 - Mobility platforms
 - penetrometers

Excavation & Mobility Modeling DEM Development Goals

Rover wheel sinkage/torque: test results vs. simulaiton

UAF

- Validated DEM model of regolith geotechnical properties, and excavation & mobility process
 - Grain roughness, size & shape distribution
 - Grain surface cleanliness (high-vacuum)
 - Grain surface charging
 - percussive blades & scoop effectiveness

Implications for Lunar Science & Exploration Activities

- Physically based simulation tools can help:
 - Describe different complex machine/soil interactions to estimate common soil behavior (e.g., triaxial; direct shear; wheel traction/digging; penetrometer)
 - Relate Earth tests to lunar conditions
 - Design next generation equipment
 - Create virtual training environments
 - Plan future lunar surface operations
 - Interpret new lunar soil test data

